Andrew Singleton, Chief of the Laboratory of Neurogenetics
Our Priority – Diseases of Aging

• Alzheimer’s disease
 • 5 million in the US currently affected ($203 billion)
 • 15 million by 2050 ($1.2 trillion)

• Parkinson’s disease
 • 1 million in the US currently affected ($25 billion)
 • 4 million by 2050 (~$150 billion)

• Amyotrophic Lateral Sclerosis
 • 30,000 in the US currently affected ($300 million)
Our Path

1. Identify the locus
2. Find the gene
3. Understand the pathobiology
4. Identify a target
5. Treatment
Genetics of Parkinson’s Disease

Frequency in the population

Risk of Disease

Genetics of Parkinson’s Disease

Frequency in the population

Risk of Disease

SNCA

PARK2

Andrew Singleton, Laboratory of Neurogenetics
SINGLETA@MAIL.NIH.GOV

National Institute on Aging
Turning discovery into health
Genetics of Parkinson’s Disease

Frequency in the population

Risk of Disease

SNCA LRRK2
PARK2 PINK DJ1

GBA

Andrew Singleton, Laboratory of Neurogenetics
SINGLETA@MAIL.NIH.GOV
Genetics of Parkinson’s Disease

Frequency in the population

Risk of Disease

SNCA LRRK2
PARK2 PINK1 DJ1

GBA LRRK2 SNCA
Genetics of Parkinson’s Disease

Frequency in the population

Risk of Disease

SNCA LRRK2
PARK2 PINK 1 DJ1
FBXO7 VPS35 ATP13A2
PLA2G6 SYNJ1

GBA
LRRK2

HLA LRRK2
SNCA MAPT SYT11
GAK STK39 STX1B
GPNMB BST1
RAB7L1 LAMP3 HIP1R
SCARB2 STBD1 ACMSD FGF20

Andrew Singleton, Laboratory of Neurogenetics
SINGLETA@MAIL.NIH.GOV

NIH
National Institute on Aging
Turning discovery into health

Our Progress

• Massive international collaborative study
 • Collected DNA on 20,000 PD patients, and 80,000 people without disease

• Assessed variability in their genetic code (~20 million common changes)

• Looked for genetic variants that are more frequent in one group versus the other
Our Progress

• Took 3 years of work at sites across the US
• Lead by our laboratory within the Intramural Research Program of NIA
Genetics of Parkinson’s Disease

Frequency in the population

Risk of Disease

SNCA LRRK2
PARK2 PINK1 DJ1
FBXO7 VPS35 ATP13A2
PLA2G6 SYNJ1

GBA

LRRK2

HLA LRRK2
SNCA MAPT SYT11
GAK STK39 STX1B
GPNMB BST1 HIP1R
RAB7L1 LAMP3 STBD1
SCARB2 ACM3D FGF20

Andrew Singleton, Laboratory of Neurogenetics
SINGLET@MAIL.NIH.GOV
Genetics of Parkinson's Disease

Frequency in the population

Risk of Disease

SNCA LRRK2
PARK2 PINK 1 DJ1
FBXO7 VPS35 ATP13A2
PLA2G6 SYNJ1

GBA

LRRK2

HLA SNCA GAK MAPT SYT11
MCC1 GAK STK39 STX1B
SIPA1L2 GPNMB BST1 GBA
SNCA RAB7L1 LAMP3 HIP1R
INPP5F SCARB2 STBD1
CCDC62 ACMSD FGF20 HLA
Mir4697 DDRGK1 VPS13C GCH1
RIT2

Our Path

1. Identify the locus
2. Find the gene
3. Understand the pathobiology
4. Identify a target
5. Treatment
Pathways of Disease

Risk of Disease

Frequency in the population

Andrew Singleton, Laboratory of Neurogenetics
SINGLETA@MAIL.NIH.GOV
Summary

• We have made incredible progress in the genetics of age related disease
 • Still a great deal to do
 • We have the infrastructure and knowhow to finish this task

• Concurrently we must work to understand the molecular processes that are disease
 • An incredible challenge, but our surest route to an effective treatment
Our People